Hossein Entezari Zarch

(213)709-9486 \$\displayer entezari@usc.edu \$\displayer https://hoenza.github.io/

EDUCATION

University of Southern California, Los Angeles, California

2023 - Present

Ph.D. in Computer Science

Advisor: Prof. Murali Annavaram

Thesis: "Efficient Large-Scale Machine Learning Systems;

Application in Efficient Large Language Models Inference & Training"

University of Southern California, Los Angeles, California

M.Sc. in Computer Science

2023 - 2024 GPA: 3.95/4.0

University of Tehran, Tehran, Iran

2017 - 2022

B.Sc. in Computer Engineering[Software]

GPA: 18.59/20.0

Advisors: Prof. Hamed Kebriaei & Prof. Pooya Shariatpanahi

Thesis: "Incentive Mechanism for Reliable Coded Federated Learning;

Application in Distributed Edge Computation"

RESEARCH DIRECTIONS

♦ Efficient LLM Inference & Training

- ♦ Large-Scale ML Systems
- ♦ Memory–Compute Trade-offs in Transformers
- ♦ Dynamic/Sparse Attention Mechanisms

PUBLICATIONS (* indicates equal contribution.)

- ♦ Hossein Entezari Zarch, Lei Gao, Chaoyi Jiang, Murali Annavaram. "DELTA: Dynamic Layer-Aware Token Attention for Efficient Long-Context Reasoning." arXiv preprint, 2025. [PDF]
- ♦ Hossein Entezari Zarch*, Lei Gao*, Chaoyi Jiang, Murali Annavaram. "DEL: Context-Aware Dynamic Exit Layer for Efficient Self-Speculative Decoding." COLM 2025. [PDF]
- ♦ Chaoyi Jiang*, Lei Gao*, **Hossein Entezari Zarch**, Murali Annavaram. "KVPR: Efficient LLM Inference with I/O-Aware KV Cache Partial Recomputation." **ACL Findings** 2025. [PDF]
- ♦ Chaoyi Jiang*, Sungwoo Kim*, Lei Gao, Hossein Entezari Zarch, Won Woo Ro, Murali Annavaram.
 "MARché: Fast Masked Autoregressive Image Generation with Cache-Aware Attention." arXiv preprint, 2025.
 [PDF]
- Arun Ramachandran, R. Govindarajan, Prakash Raghavendra, Murali Annavaram, Hossein Entezari Zarch, Chaoyi Jiang, Lei Gao. "Balancing Memory and Compute (BMC) of Attention Blocks: An Effective Technique for Speculative LLM Inferencing." (under review)
- ♦ Hossein Entezari Zarch, Abdulla Alshabanah, Chaoyi Jiang, Murali Annavaram. "CADC: Encoding User-Item Interactions for Compressing Recommendation Model Training Data." RecSys Workshop, 2024. [PDF]
- ◇ Chaoyi Jiang*, Abdulla Alshabanah*, Hossein Entezari Zarch, Keshav Balasubramanian, Murali Annavaram.
 "HuffmanEmbed: Using Huffman Coding for Embedding Table Compression in Deep Learning Recommendation Models." EuroSys Poster, 2025. [PDF]
- ♦ **Hossein Entezari Zarch***, Milad Soltany*, Hesam Mojtahedi*, Amirhossein Kazerouni*, Alireza Morsali, Azra Abtahi, Farokh Marvasti. "Ensemble Neural Representation Networks." arXiv preprint, 2022. [PDF]
- ♦ Seyed Masoud Rezaeijo, **Hossein Entezari Zarch**, Hesam Mojtahedi, Nahid Chegeni, Amir Danyaei . "Feasibility Study of Synthetic DW-MR Images Using GANs". **AMR**, 2022. [PDF]
- ♦ Seyed Masoud Rezaeijo, Mohammadreza Ghorvei, Razzagh Abedi-Firouzjah, Hesam Mojtahedi, **Hossein Entezari Zarch**. "Detecting COVID-19 in Chest Images via Transfer Learning". **EJRNM**, 2021. [PDF]

Graduate Research Assistant, SCIP Lab, USC

Advisor: Prof. Murali Annavaram

Research on efficient LLM inference and recommendation systems. Contributed to multiple projects published or under review at top-tier venues.

- ♦ **DELTA:** Built a dynamic sparse attention module combining layer-aware token selection, page-based KV caching, and adaptive query refresh for efficient long-context LLM inference.
- ♦ **DEL:** Designed a dynamic exit framework that adapts layer depth and speculation length during self-speculative decoding using token-per-layer metrics and confidence-based control.
- ♦ MARché: Developed a training-free cache-aware attention framework with selective KV refresh for efficient masked autoregressive image generation.
- ♦ **KVPR:** Developed an I/O-aware LLM inference framework using partial KV-cache recomputation and asynchronous CPU-GPU overlap to minimize PCIe bottlenecks and maximize throughput.
- ♦ CADC: Designed matrix-factorized compression for efficient large-scale recommender training.
- ♦ **HuffmanEmbed:** Built frequency-aware embedding compression with Huffman coding for DLRMs.

Software Engineer Intern, Divar, Tehran, Iran

Sept. 2022 - Dec. 2022

Jan. 2023 – Present

Team: Search & Submit

Contributed to large-scale backend search systems while gaining experience in microservice design and integration.

Undergraduate Research Assistant, University of Tehran

Sept. 2020 - Jul. 2022

Advisor: Prof. Behnam Bahrak

- ♦ Efficient INR: Developed an ensemble neural representation model with parallel lightweight sub-networks and FLOP-constrained optimization for efficient signal reconstruction.
- ♦ **Real-Time Object Detection:** Optimized YOLO and Fast-RCNN pipelines for robotic sorting, achieving real-time inference with balanced accuracy and speed.

Undergraduate Research Assistant, MSL Lab, Sharif University of Technology Mar. 2019 – Oct. 2021 Advisor: Prof. Farokh Marvasti

♦ **Neural Machine Translation:** Explored RNN and Transformer architectures (LSTM, GPT, BERT) for bilingual translation, analyzing accuracy—efficiency trade-offs.

SKILLS

LLM Inference & Systems Optimization:

- ♦ Efficient LLM Serving, KV Page Management, Request Scheduling, Prefix Caching
- ♦ Sparse Attention, Memory-Aware Inference, Retrieval-Augmented Generation
- ♦ Speculative Decoding, Early-Exit and Layer-Skipping Strategies

Machine Learning & Modeling:

- ♦ Transformers (GPT, BERT), Signal Reconstruction, Federated Learning, GANs
- ♦ Recommender Systems (DLRMs, Embedding Compression, Matrix Factorization)
- ♦ Object Detection (YOLOv3/v5, Fast-RCNN, MobileNet)

Frameworks & Infrastructure:

- ♦ PyTorch, Hugging Face, vLLM, SGLang
- ⋄ C++, Python, CUDA, Bash
- ♦ Docker, Kubernetes, gRPC

Volunteer Service

Mentorship: USC CURVE (Fall 2024, Spring & Fall 2025), USC VSI (Summer 2025)

Talks: DEL for Efficient Speculative Decoding LLM Inference (AMD 2025)

TEACHING EXPERIENCE

♦ CS 102: Fundamentals of Computation

Spring 2023 - 2025

♦ CS 585: Database Systems

Summer 2023, Fall 2025

♦ CS 100: Explorations in Computing

Fall 2023